The ATP binding site on rho protein. Affinity labeling of Lys181 by pyridoxal 5'-diphospho-5'-adenosine.

نویسندگان

  • A J Dombroski
  • J R LaDine
  • R L Cross
  • T Platt
چکیده

We have labeled the nucleoside triphosphate-binding domain of Escherichia coli rho factor with the ATP affinity analog [3H]pyridoxal 5'-diphospho-5'-adenosine (PLP-AMP). PLP-AMP completely inactivates the RNA-dependent ATPase activity of rho upon incorporation of 3 mol of reagent/mol of hexameric rho protein. Although the potency of PLP-AMP is enhanced when an RNA substrate such as poly(C) is present, the stoichiometry for inhibition remains the same as in the absence of poly(C). The nucleotide substrate ATP competes very effectively for the binding site and protects against PLP-AMP inactivation. A domain of rho called N2, which comprises the distal two-thirds of the molecule (residues 152-419) and encompasses the region proposed to bind ATP, is labeled specifically in the presence of poly(C). Amino acid sequence analysis of the single [3H]PLP-AMP labeled proteolytic fragment showed Lys181 to be the site of modification, suggesting that this residue normally interacts with the gamma-phosphoryl of bound ATP. These results agree with our proposed tertiary structure for the ATP-binding domain of rho that places this lysine residue in a flexible loop above a hydrophobic nucleotide-binding pocket comprised of several parallel beta-strands, similar to adenylate kinase, F1-ATPase, and related ATP-binding proteins. Parallel studies of rho structure and function by site-directed mutagenesis and chemical modification support this interpretation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Affinity labeling of nucleotide-binding sites on kinases and dehydrogenases by pyridoxal 5'-diphospho-5'-adenosine.

A new adenine nucleotide analog, [3H]pyridoxal 5'-diphospho-5'-adenosine (PLP-AMP), has been synthesized. The effectiveness of PLP-AMP as an affinity probe has been tested using a number of nucleotide-binding enzymes. In comparison to reaction with pyridoxal 5'-phosphate, PLP-AMP binds more tightly and exhibits greater specificity of labeling for most enzymes tested. PLP-AMP is a very potent in...

متن کامل

Characterization of the ATP Binding Site on Escherichia coli DNA Gyrase AFFINITY LABELING OF Lys-103 AND Lys-110 OF THE B SUBUNIT BY PYRIDOXAL

We have labeled the adenosine triphosphate binding site of Escherichia coli DNA gyrase with the ATP affinity analog, [3H]pyridoxal 5’-diphospho-5’-adenosine (PLP-AMP). PLP-AMP strongly inhibits the ATPase and DNA supercoiling activities of DNA gyrase, with 50% inhibition occurring at 7.5 pM inhibitor. ATP and ADP compete with PLP-AMP for binding and protect the enzyme against inhibition. The la...

متن کامل

Primary Structure Revision and Active Site Mapping of E. Coli Isoleucyl-tRNA Synthetase by Means of Maldi Mass Spectrometry

The correct amino acid sequence of E. coli isoleucyl-tRNA synthetase (IleRS) was established by means of peptide mapping by MALDI mass spectrometry, using a set of four endoproteases (trypsin, LysC, AspN and GluC). Thereafter, the active site of IleRS was mapped by affinity labeling with reactive analogs of the substrates. For the ATP binding site, the affinity labeling reagent was pyridoxal 5'...

متن کامل

Affinity labeling of Avena phytochrome with ATP analogs.

The presence of ATP-dependent, polycation-stimulated protein kinase activity in highly purified phytochrome preparations [Wong, Y.-S., Cheng, H.-C., Walsh, D. A. & Lagarias, J. C. (1986) J. Biol. Chem. 261, 12089-12097] has renewed the hypothesis that the phytochrome photoreceptor possesses enzymatic activity. A prerequisite for protein kinase function is the presence of an ATP binding site. He...

متن کامل

Affinity labeling of a tyrosine residue in the ATP binding site of the recA protein from Escherichia coli with 5'-p-fluorosulfonylbenzoyladenosine.

We have covalently modified the recA protein from Escherichia coli with the adenine nucleotide analog 5'-p-fluorosulfonylbenzoyladenosine (5'-FSBA). The rate at which the protein is modified shows a sigmoidal dependence on the concentration of 5'-FSBA suggesting that binding of the analog is characterized by positive cooperativity. Covalent modification of the protein results in irreversible in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 263 35  شماره 

صفحات  -

تاریخ انتشار 1988